Technology Chile , Chile, Thursday, January 07 of 2021, 13:12

Descubren un mecanismo para generar corrientes superficiales en líquidos

El hallazgo fue realizado por científicos de las universidades de Chile, de O'Higgins y de Santiago de Chile, y se desarrolló íntegramente en suelo nacional. El descubrimiento fue publicado en 'Physical Review Letters'

UCHILE/DICYT “Hemos descubierto un nuevo mecanismo para generar corrientes en la superficie del agua o cualquier líquido” afirmó Nicolás Mujica, académico del Departamento de Física de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile y doctor en Física de la Universidad París 6 (Francia), respecto a la investigación destacada por la revista Physical Review Letters.

 

Pablo Gutiérrez, del Instituto de Ciencias de la Ingeniería de la U. de O'Higgins, explicó que “esto tendrá aplicaciones muy importantes, desde procesos de mezcla eficientes en superficies líquidas, hasta la separación de contaminantes superficiales para la limpieza sencilla de tanques industriales”.

 

El trabajo realizado tiene el gran mérito de encontrar “un mecanismo hasta ahora desconocido de generación de corrientes debido a la presencia de paredes móviles y que lleva a la generación de remolinos muy particulares. Es un gran resultado, que se está reportando a la comunidad científica por primera vez”, agregó Nicolas Périnet, investigador asociado del Laboratorio de Materia Fuera del Equilibrio.


Dos experimentos para dar con un mecanismo

 

Para lograr sus resultados, el equipo de investigadores utilizó un montaje de ondas de Faraday (ondas generadas por vibraciones del contenedor) y otro con un disco rotatorio, que fue fabricado con impresión 3D y corte láser en la Universidad de Santiago de Chile.

 

Las medidas se realizaron con una cámara rápida Phantom, de las que se usan para registrar movimientos tan rápidos que son imperceptibles al ojo humano, añadió Leonardo Gordillo, académico especializado en mecánica de fluidos del Departamento de Física de la Facultad de Ciencia de la Universidad de Santiago de Chile.

 

“Hicimos dos experimentos: en el primero tomamos una cubeta llena de agua, que espolvoreamos con partículas para visualizar los movimientos en la superficie del líquido. Vibramos verticalmente la cubeta para generar una onda. Ésta gatilla las corrientes que descubrimos, algo evidenciado por cómo se organizaron las partículas que agregamos. El segundo experimento lo hicimos con un disco vertical que alterna su dirección de giro. Al sumergirlo en el agua hasta la mitad, ejercemos fuerzas sobre el fluido similares a las del primer experimento, pero prescindiendo de la onda. Observamos exactamente el mismo tipo de corrientes, lo que nos permitió identificar el origen del fenómeno y asociarlo a la pared”, explica Héctor Alarcón, investigador de la Universidad de O’Higgins, quien estuvo trabajando en este proyecto por tres años. Además, el equipo realizó simulaciones numéricas de alta complejidad.

 

El siguiente paso en la investigación será medir con más detalle las velocidades en la superficie del líquido con medidas tridimensionales del sistema. “Esto nos llevará a poner números a ciertas cantidades de interés. Hecho lo anterior, manipularemos objetos flotantes sin un contacto directo, usando las corrientes que hemos descubierto a través de los bordes móviles”, concluye Matías Herrera, Licenciado en Física Aplicada de la Universidad de Santiago de Chile y cuya tesis de Ingeniería Física abordará el tema.

 

En el trabajo participaron Héctor Alarcón, Universidad de O’Higgins y DFI, U. de Chile; Matías Herrera, Universidad de Santiago de Chile; Nicolas Périnet (Francés) y Nicolás Mujica del Departamento de Física FCFM de la Universidad de Chile; Pablo Gutiérrez, Universidad de O’Higgins y Leonardo Gordillo (Peruano) de la Universidad de Santiago de Chile.

 

Para ver el artículo original publicado por la revista Physical Review Letters, bajo el título Faraday-waves contact-line shear gradient induces streaming and tracer self-organization: From vortical to hedgehog-like patterns (en español: Ondas de Faraday induce corrientes y auto-organización de partículas: desde patrones vorticales hasta patrones “erizados”) puede entrar aquí.